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Abstract 

Not all crystallographic structural investigations are 
amenable to a phasing solution by direct methods 
alone. Guideline procedures are outlined which are 
intended to help the evaluation of whether direct- 
methods procedures may be expected to phase dif- 
fraction data for large molecular structures. This 
analysis is directed at three separate levels of inquiry: 
(1) How good are the primary data and can E values 
be derived to represent a point-atom structure. (2) 
How well do the data interact through phase rela- 
tionships and may they be expected to produce a 
stable phasing solution. (3) What is the prognosis for 
finding recognizable solutions. Data are presented 
from the post-mortem analyses of a number of large, 
difficult-to-solve, structures to illustrate each of these 
points. Direct-methods practitioners are to be 
encouraged that crystal structures having more than 
300 atoms per asymmetric unit may occasionally be 
determined utilizing present methodologies provided 
that an a priori prognosis for obtaining a solution is 
favorably high, adequate computational resources 
are available, and sufficient persistent effort is 
applied. 

Introduction 

More than 40 years have passed since the first suc- 
cessful applications of direct phasing methods to 
crystal structure determination were reported in the 
earliest volumes of this journal (Gillis, 1948; Kasper, 
Lucht & Harker, 1949). Most crystallographers, 
however, were not convinced that these methods 
contained any new phasing information which could 
not have been obtained from an appropriate inter- 
pretation of the Patterson function. The claim that 
the centrosymmetric phase problem was, in principle, 
solved (Hauptman & Karle, 1953, 1954), was 
received with guarded skepticism (Cochran & 
Woolfson, 1954; Vand & Pepinsky, 1954; Rogers & 
Wilson, 1955). It was probably not until more com- 
plex centrosymmetric structures were determined 
(Karle, Hauptman, Karle & Wing, 1958) that most 
skeptics were willing to conclude that although these 
techniques could not absolutely guarantee a solution 
to the phase problem, they could solve structures 
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that were indeterminable by any other method. Sub- 
sequent applications to non-centrosymmetric struc- 
tures further underscored this truth (Karle & Karle, 
1964, 1966; Karle, Karle & Estlin, 1967; Oh & 
Maslen, 1968) and triggered urgent demands for 
computer software from researchers who wished to 
perform these state-of-the-art structural analyses on 
an enormous class of chemical substances and 
natural products which could not have been 
determined by any other known method. 

It took nearly 20 years from the time that Harker 
& Kasper first reported the inequality relationships 
(Harker & Karper, 1948) to develop practical phas- 
ing strategies and the computational technology 
which permitted researchers to exploit direct 
methods in a routine, black-box, manner. These 
direct-methods phasing strategies and computing 
algorithms have improved over the intervening 25 
years where it is now fairly routine to expect the 
majority of non-centrosymmetric structures having 
up to 100 non-hydrogen light atoms in the asym- 
metric unit to be phased without too much difficulty, 
provided one has a sufficient number of accurately 
measured diffraction data. Routine applications to 
structures possessing more than 100 atoms remain, 
for the time being, less certain, and a large fraction 
of these structures may require a number of solution 
attempts to reach a successful conclusion. 

Our present experience does not permit us to 
reliably extrapolate the limit of structural complexity 
which may ultimately be achieved by using these 
methods (see for example, Cochran, 1958). Only a 
small number of the unknown light-atom structures 
possessing more than 200 atoms have been success- 
fully determined using traditional tangent-formula 
procedures (Karle, Karle, Mastropaolo, Camerman 
& Camerman, 1983; Langs, 1988). The Sayre tangent 
formula (Woolfson & Yao, 1990) and minimal func- 
tion (Guo & Hauptman, 1990), discussed in this 
symposium, appear to have a larger radius of con- 
vergence than traditional tangent-formula methods, 
and it is expected that more structures exceeding 200 
atoms will be determined in the near future. Other 
tangent-formula modifications such as those 
incorporating higher-order determinants (Karle, 
1971; Tsoucaris, 1980) may eventually prove to be 
more powerful in ab initio macromolecular phasing 

© 1993 International Union of Crystallography 



C O N F E R E N C E  PROCEEDINGS 159 

applications, but, in the words of Jerome Karle 
(1989), 'These techniques have not achieved wide- 
spread use up to this time, presumably because there 
are alternative techniques that investigators have 
found to be preferable.' 

Entropy-based phasing methods, in comparison, 
appear to be capable of converging to a solution for 
much larger structures, say 600 atoms or more 
(Harrison, 1989; Sj61in, Prince, Svensson & Gilliland, 
1991; Sj61in & Prince, 1991; Gilmore, Henderson & 
Bricogne, 1991), but the success of these procedures 
has not always been well documented and may 
require sieving through a large number of trial 
electron-density maps in order to find one which is 
capable of producing a solution. The Sayre tangent 
formula and minimal functions may be useful for 
producing these trial maps in application to small 
protein structures. A factorialization scheme to 
sample the phase space of zonal restricted data in 
order to produce these trial maps for larger macro- 
molecules has been demonstrated for a known pro- 
tein structure containing 2800 non-hydrogen atoms 
(Sj61in, Prince, Svensson & Gilliland, 1991), but 
discussions in the course of this symposium have 
questioned whether this achievement could be suc- 
cessfully repeated for some unknown macromolecu- 
lar structure at this time. 

This paper will provide a review of a number of 
important criteria which are vital to the success of 
phase-invariant-based direct-methods procedures. It 
will be shown that even the best direct-methods 
strategy can be defeated if one is blind to certain 
obvious limitations that may prevent a phase solu- 
tion from being obtained. Often these difficulties can 
be assessed beforehand, and may influence one to 
alter the phasing strategy, attempt to measure better 
data, or abandon the problem altogether. 

The primary data 

Small-molecule direct methods have conditioned 
crystallographers to focus primarily on two sources 
of potential difficulty concerning the primary inten- 
sity data, but it will be necessary to address these and 
other less publicized concerns when considering 
phasing applications to larger structures. Firstly, 
how well can a set of normalized E values be scaled, 
and secondly, how might measuring errors in the 
X-ray intensities affect these data, particularly the 
largest and smallest E magnitudes. The phases of the 
largest E values are actively used in the tangent 
formula; the smallest E's are normally used to estab- 
lish a set of T0 triples or negative quartet rela- 
tionships which are passively used to compute figures 
of merit to help indicate correct phase solutions. In 
this latter regard one is cautioned to measure even 
the weakest data with reasonable precision. 

Table 1. E-statistical analysis for the P212121 struc- 
ture of hexadecaisoleucinomycin (N = 127 atoms) 

A total of 6429 data were measured, scaled and sorted into ten approxi- 
mately equal population shells out to a maximum sinO/A of 0.50 A 
Column 2 gives the number of  reflections in each shell, column 3 the 
fraction of the data for which F >  3tr(F), column 4 the fraction of  IEI < 
0.70, column 5 the fraction of  IEI > 1.27, and column 6 gives the average 
value of  IEI 2 for the shell. The fraction of !El < 0.70 in the tenth or 
highest sin0/,~ shell dips markedly from 0.44 to 0.35, largely due to the 
decreasing percentage of  data observed at the 3tr(F) level, i.e. from 0.299 to 
0.206. This indicates that the accuracy of  the largest and smallest .El 
amplitudes has degraded. 

Shell No. of 
No. E's > 3tr < 0.7 > 1.27 <E 2) 

1 720 0.968 0.456 0.193 0.998 
2 669 0.936 0.390 0.209 1.120 
3 644 0.866 0.475 0.129 0.827 
4 652 0.741 0.469 0.176 0.965 
5 620 0.619 0.494 0.147 0.866 
6 643 0.575 0.414 0.188 1.132 
7 613 0.480 0.414 0.206 I. 136 
8 653 0.389 0.438 0.158 1.033 
9 618 0.299 0.440 0.159 0.987 

10 596 0.206 0.347 0.148 0.927 

Diffraction-collection protocols that invoke fast pre- 
scan procedures to assess whether a reflection is 
significant above background, and worthy of scan- 
ning more accurately at a slower speed, are not 
suitable for this purpose. Similar problems may be 
encountered when an area detector is employed to 
measure diffraction data. 

Although E magnitudes can be scaled by at least a 
half-dozen different methods, procedures which 
allow for anisotropic thermal modeling, should it 
prove to be significant, are to be preferred (Levy, 
Thiessen & Brown, 1970; Sheriff & Hendrickson, 
1987; Blessing & Langs, 1988). Bayesian processing 
of the data to obtain optimal estimates for F and 
tr(F) is to be recommended (French & Wilson, 1978), 
although it is not advisable to tax the method by 
applying it to high-resolution data shells which have 
fewer than, say, 20% of the data observed at the 
3tr(F) level. The temptation to measure as many 
significant strong reflections as possible to minimize 
the difficulty in solving a structure may often cause 
one to measure high-resolution data shells in which 
fewer than 10% of the data are observable. How- 
ever, it may be risky to merge sparsely observed 
high-angle data with lower resolution shells, particu- 
larly with regard to accurately estimating the 
strongest and weakest E magnitudes. To analyze a 
set of scaled E values it is useful to sort the data into 
equal population shells as a function of increasing 
sinO/a, and compute the average IEI 2, the percentage 
of data observed at the 3tr level, the fraction of E 
values less than, say, 0.70 or greater than 1.50, and 
compare these with their expected values as is 
indicated in Table 1. The results may indicate how 
well the weakest and strongest reflections are esti- 
mated, particularly in the higher resolution shells. 
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Departures from the point-atom model 

Data-reduction routines that provide reasonable F 
and tr(F) estimates may be used to infer a minimum 
bound on the errors in deriving individual E magni- 
tudes. The actual errors in deriving a set of E values 
will be larger than indicated by counting statistics, A 
and for some data sets the goal of producing E ca) Room 

3.54 
values that correspond to a point-atom structure 2.86 

may be much more difficult to achieve than with 2.60 
2.36 

others. 225 

This point can be illustrated by examining data 2~2 
2.06 

recorded both at room temperature and at 115 K for 202 
1.94 

the monoclinic P21 structure of gramicidin A (Langs, ~86 
1.84 Smith, Courseille, Pr6cigoux & Hospital, 1991), a 178 

peptide structure that required the determination of ~.74 
more than 300 light-atom positions. The room- 1.73 

1.71 

temperature structure was refined by constrained ~.70 
1.70 least squares to R = 0.158 for 2942 2tr(F) data to 1.68 

1.5/~ resolution, the low-temperature set to R = 1.68 
1.68 

0.150 for 6869 data to 1.2 A resolution. By this 1.66 

measure it would appear that the accuracy of the t.66 
1.64 

amplitude data for either set was not significantly 1.62 

different in their agreement with the refined model. 1.61 
1.60 

What is surprising, however, is that although the 159 

stronger E amplitudes which are common to both ~59 
1.59 

data sets are in general consistent within this - 1 5 %  159 
1.58 

variation for the majority of the data, there appears ~.58 
to be a significant reordering among the triples with ~58 
regard to their A values (Ah,k = 2lEhE_kEk_ d/Nl'2). 1157.57 
Table 2 lists a comparison of the cosine values of the 1.55 

1.54 
phase invariants, q~,k = ~0h -- ~0k + ~0k - h for those ~53 
triples whose A value exceeds 1.50 for each set of 1.53 

1.53 

data. The distribution of A values for both tempera- ~.53 
1.52 

tures is approximately the same and allows one to 1.51 

project an equivalent A-weighted expected cosine ~5~ 

e(COSqbh,k) = ~'Ah,k[Ii(Aha,)/lo(Ah,k)]/ZAh,k (1) 

of --0.66 for either of these two lists, which is 
equivalent to an average deviation of 49 ° from the 
zero-phase estimate assumed in the tangent formula. 
The true values for the average A-weighted cosine 
invariants 

(COSt/~,k)cat¢ = YAh,kCOSClh,,k/YAn,k (2) 

are in reality, however, 0.17 and 0.46 respectively, for 
the room- and low-temperature data sets. Lowering 
the temperature of the crystal reduces these average 
phase invariant errors from 80 to 63 °, to approach 
more closely the 49 ° value expected of a randomly 
distributed point-atom structure. Whereas the phases 
of the room-temperature structure are divergent 
under tangent-formula phase refinement, those of the 
isomorphous low-temperature structure tend to con- 
verge. 

The lesson that one should draw from this com- 
parison is that the degree to which a set of E values 

Table 2.2~2 triples for the monoclinic P21 structure of 
gramicidin A ( N = 3 3 2  atoms) crystallized from 

methanol 

l n v a r i a n t s  a r e  c o d e d  a s  q~ = ~ o ( N l )  + ~ 0 ( N 2 )  + ~0 (N3)  + T;  

~o( - N , )  = - ~ o ( N , ) .  

N I  N 2  N 3  T c o s q )  
t e m p e r a t u r e  

1 - 99 - 2 0 0 .975 

1 - 2 1  - 1 2  0 - 0 . 1 2 3  

3 - 5 11 ~ 0 .997 

2 - 50 - 1 3  0 - -0 .728 

1 - 7 - 2 1 5  0 0 .472 

2 - 98 - 1 2  0 0 .530  

6 I1 - 1 7  0 0 .609 

2 6 - 272 ~ - 0 .982 

1 - 394 - 8 0 0 .826 

4 - 1 2  - 36 0 - 0 .949 

3 22 - 35 0 0 .957 

10 13 - 1 7  ~ 0 .612 

I - -25 - 263 ~ 1.000 
I - 53 - 1 6 2  ~ 0 .663 

4 - 89 9 ~ - 0 .097 

2 38 - 1 6 3  ~ - 0 . 9 5 7  

6 22 - 3 8  0 0.991 

I 7 - 637 0 - 0 .683 

4 99 - 9 0 0 .912 

7 20 - 4 0  0 0 .972 

9 - 4 4  - 1 2  0 -0 .981 

1 - 3 - 853 ~ - 0 . 6 4 4  

12 --18 - 24 0 - 0 .993 

15 - 2 2  - 1 8  ~ 0 .650 

7 - 30 - 4 1  0 - 0 .173 

5 - 6 - 1 6 4  ~ 0.671 

2 - 6 5  - 1 4 8  0 0 .998 

1 - 101 - 125 0 - 0 .492 

3 62 - 39 ~ 0 .837 

2 - 1 7  - 381 0 - 0 . 5 0 1  

2 66 - 1 5 0  0 0 .798 

4 7 - 205 0 0 .965 

2 - 1 1 6  80 ~ - 0 .950 

I - 1 5 8  - 95 0 - 0 .959 

2 - 301 - 29 0 - 0 .207 

3 - 53 52 ~ 0 .019 

12 - 42 - 1 3  0 0.671 

3 18 - 1 2 8  ~ 0 .138 

4 - 22 - 82 0 0 .943 

I - 1 6 1  - 1 0 2  0 0 .894 

2 - 59 - 220 0 - 0.961 

6 21 - 74 ~ 0 .645 

3 15 - 1 4 9  0 - 0 . 7 4 8  

7 24 - 70 0 - 0 .693 

E(cos)  = 0 . 6 6  I ,  ( co s )oak  = 0 . 1 7 5 !  

(b )  L o w  t e m p e r a t u r e  ( 1 1 5  K )  

3.26 1 - 3 - 32 0 1.000 

2.47 2 - 19 - 32 0 0 .999 

2.41 2 - 141 - 4 0 0 .940 

2.37 I 5 - 93 0 0 .994 

2.36 6 26 - 9 0 1.000 

2.34 4 - 22 - 32 0 0 .908 

2.25 6 44 - - 7 0 1.000 
2.17 2 22 - 69 ~" 0 .766 

2.13 1 32 - 70 0 1.000 

2.11 2 32 - 67 0 0.993 

2.10 4 19 - 6 9  rr 0 .977 

2.06 11 36 - 14 0 - 0 .977 

2.03 2 - 26 - 87 0 0 .329 

2.02 3 - 141 10 0 0 .809 

2.02 8 I I - 60 0 - 0 .719 

2.02 13 26 - 19 0 - 0 . 1 4 5  

1.97 5 - 75 - I 1 0 0 .999 

1.97 5 51 - 24 rr 0 .710 
1.95 5 - 28 46 rr 0 .988 

1.91 2 - 5 - 310 rr - 0 .246 

1.87 3 5 - 317 0 0.953 

1.87 I - 13 257 rr 0.971 

1.87 5 - 13 - 92 rr 0 .942 

1.85 10 32 - 41 0 0 .760 

1.84 7 - 17 75 zr - 0 .889 

1.84 4 - 299 5 rr - 0 .023 

1.82 14 53 - 21 0 - 0 .942 

1.82 4 40 - 93 0 0 .579 

1.81 9 16 - 82 0 - 1.000 
1.80 2 10 - 306 0 1.000 
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Table 2 (cont.) 

.4 N 1 N 2  N 3  T c o s  

1.80 1 141 41 0 0 .997  

.79 7 8 - 143 0 - 0 .502  

.79 4 - 69 67 ~ 0 .927  

.79 11 39 - 4 0  0 - -0 .631 

.78 I 214 27 0 0 .794  

.77 6 71 . 3 4  0 1.000 

.76 4 - 53 93 ~ - - 0 . 2 4 7  

.76 25 32 - 31 0 0 .849  

.75 2 17 - 255 0 0 .055  

.75 7 22 - - 8 9  0 0 .993  

.75 3 68 - 89 0 0 .243 

.74 5 15 - 1 2 3  0 0 .860  

.73 5 141 - 14 0 0 .825  

1.71 4 444  - 5 0 0 .814  

1.70 8 103 19 0 - 0 .806  

1.70 2 - 51 159 ~ 0 .993 

1.69 4 299 - 1 4  0 0.981 

1.69 8 - 1 0 3  - 22 ~ 0 .073 

1.68 3 25 - 2 6 0  0 0 .178  

1.67 17 - 29 - 58 ~ 0 .167  

1.66 12 - 1 3  127 ~ 0 .735  

1.65 7 32 - 9 9  0 1.000 

1.64 10 41 - 69 0 - 0 .916  

1.64 2 444  - 14 0 0 .933  

1.63 5 147 - 2 1  0 0 .577  

1.63 8 - 32 - 98 0 - 0 .149  

1.63 5 14 - 209 0 0 .029  

1.63 32 - 43 36 ~ 0 .698  

1.63 19 49 - 45 0 - 0 .784  

1.62 30 47 - 35 0 1.000 

1.61 2 9 - 590 0 0 .977  

1.61 16 - 17 91 ~ 0 .999  

1.60 13 32 - 87 0 0 .910  

1.59 7 192 - 1 5  0 0 .964  

1.57 5 - 25 178 ~ 0 .823 

1.57 17 39 - 68 0 - -0 .592  
1.55 I 299 - 53 0 0 .945 

1.55 4 32 - 293 0 0 .999  

1.55 2 - 13 - 579 0 0 .092  
1.54 4 13 - 500 ~ 0 .994  

1.54 19 67 - 45 ~ 0 .692  

1.53 14 - 78 - 49 0 0 .915  

1.52 I1 72 - 62 0 0 .132  

1.52 8 170 - 28 0 0 .833  

1.52 2 - 147 93 ~ - 0 .964  

1.51 8 31 - 166 0 0 .200  

1.51 5 - 1 3 7  - 49 0 0 .962  

1.51 16 51 - 73 0 0 .609  

1.51 32 40  - 62 0 0 .686  

1.50 1 25 - 526 0 - 0 .165  

1.50 14 - 41 93 0 0 .809  

e(COS) = 0 . 6 6 4 ,  (COS)~,,~ = 0 . 4 6 1 .  

diverges from the theoretical point-atom model is a 
real measure of the non-uniformity of temperature 
factors of the atoms of the structure. This effect is 
separate and distinct from how uniformly or 
independently the atoms are distributed throughout 
the unit cell. In conclusion, if probabilistic phase 
invariants are used to phase a macromolecular struc- 
ture that has no heavy atoms or anomalous scat- 
terers, one will either have to succeed in reducing the 
r.m.s, temperature-factor fluctuation to less than 
what was observed for the room-temperature gra- 
micidin data, or conversely, rely on non-invariant 
methods such as entropy-based calculations in order 
to succeed. 

Connectivity among the phases 

The success of most direct-methods procedures is 
highly dependent on the order and multiplicity of 

interactions in which phases are determined through 
phase-invariant relationships that are probabilis- 
tically correct. Diffraction data that have been accur- 
ately measured, precisely scaled, and correspond 
reasonably well to a point-atom structure, should 
provide three-phase triples invariants for which the 
probabilistic estimates are quite reliable as a function 
of their A magnitudes. The tangent formula is 
expected to be able to provide a solution whose 
individual phase errors can be estimated from the a 
value computed from their total number of triples 
contributors at the end of the refinement 

ah = [(ZkAh.kCOSq~.k) 2 + (YkAh.ksinq~.k)Z] I/z 

ah ---- Y.kAh.kll(Ah.k)/lo(Ah.k) (3) 

where the variance was shown to be (Karle & Karle, 
1966) 

oo 

az(~oh) = rr2/3 + 1/lo(a)[ ~'. Iz,,(a)/n z 
n = l  

oo 

- 4  ~" Iz, ,+l(a)/(Zn + 1) 2] (4) 
n = O  

and may be shown to produce r.m.s, phase values of 
tr(~ph)---73, 50, 38, 31 and 21 ° for a values of 1.0, 
2.0, 3.0, 4.0 and 8.0 respectively. 

Generally speaking, if a larger structure is to be 
solved, the a values of its phases at the beginning of 
a convergence mapping must steadily increase as 
subsequent phases are determined, and build to a 
maximum of 5.0 or 6.0 or more at the midpoint of 
the map, before subsiding to values of less than, say 
2.0, at which point additional phases in the tail of the 
map cannot be reliably determined. 

In an iterative stepwise phase-extension process, if 
the error in pivotal, newly determined phases can be 
kept to less than _+ 45 °, that is if they are determined 
with an a value exceeding, say - 2 . 5 ,  the procedure 
has a good chance of succeeding. But if early in this 
process, there are numerous weak linkages with a 
values less than 2.5 affecting pivotal phases, this 
process will be prone to failure. For most structures 
containing 100 or more non-hydrogen light atoms, 
iterative phase-extension processes will often not suc- 
ceed unless an unusually large basis set of phases is 
employed to ensure against weak a linkages early in 
the phase-extension process. Global phase- 
refinement procedures (Yao, 1981), however, which 
use all the phase invariants from the beginning of the 
calculation, are not affected by these weak links. 

To summarize this section, if one can produce a 
convergence mapping that builds to an a of at least 
5.0, or preferably 6.0 or more for the majority of 
phases, and the data have been accurately measured 
and scaled and adequately model a point-atom struc- 
ture, one is virtually assured of a convergence to an 
acceptably stable phase solution; that is, provided 
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one can randomly sample phase space thoroughly 
enough to find a starting point from which a solution 
can be found. However, if the convergence-map pro- 
file peaks out with maximum a values of 4.0 or less, 
traditional tangent-formula phasing procedures will 
most likely not be able to find a stable convergent 
solution. One should not be encouraged to expend a 
lot of time and resources to disprove this advice 
unless one intends to use some new technique that 
may be more robust than the traditional tangent- 
formula algorithms coded into most direct-methods 
programs. It remains to be shown to what extent a 
number of newer approaches that are being 
developed can converge to a solution under these 
circumstances. 

Aberrant phase invariants 

The major reason why tangent-formula methods 
cannot easily produce solutions for some structure 
determinations that have strong convergence maps 
(apart from unrecognized twinning and misidentified 
crystal symmetries) is the influence of aberrant pivo- 
tal phase invariants. This is clearly a serious problem 
for basis-set extension methods, and although 
random phasing procedures can phase around aber- 
rant weak links in a convergence map, it may require 
a larger number of trials than normal to do so. Some 
techniques will be demonstrated in this section that 
may be useful for identifying certain of these trouble- 
some invariants for large complex structures. 

Algebraic formulae to evaluate the cosine values of 
the three-phase invariants were first derived 35 years 
ago (Karle & Hauptman, 1957; Vaughan, 1958), but 
applications were not immediate, both due to the 
computational expense at that time and the recogni- 
tion that the accuracy of these calculations would 
rapidly decrease as more complex structures exhi- 
bited a greater number of interatomic vectors that 
overlapped by chance in the Patterson function. A 
number of efforts to improve these formulae to 
minimize the effect of Patterson overlap were under- 
taken (Hauptman, 1964; Hauptman, Fisher, 
Hancock & Norton, 1969; Fisher, Hancock & 
Hauptman, 1970; Karle, 1970; Busetta, 1977; 
Giacovazzo, 1977). 

Two well known variants that were developed and 
actively employed include the TPROD (Hauptman, 
Fisher, Hancock & Norton, 1969) 

IEhE-kEk-hlCOS('Ph- ~,  + 'Pk-h)---- R3 + g ~  (5) 

R 3 = (1/4N'/2)[(3/2)(lghEk[ 2 + IEkgk_hl 2 + Ighgk_hl 2) 

+ IE, I 2 + lEd z + 14_,12 - 7/2 3 

~ =  <(IEd ''= - ~)(IE,_d ' ' 2 -  ~)(Ig,_~l ' ' 2 -  ~)>, 

and MDKS formulae (Fisher, Hancock & 
Hauptman, 1970) 

IEhE_,,E,,_,,Icos(~,,,- ,p,, + ,Pk-,,)'- M ( D -  KS) (6) 

O - <(IE,_kl = - 1) lEd, IE,-hl-> t), 

s -  <(IE,_d 2 -  l) E,I ~ t),<(lE~-k 2 -  t>,, 

where M and K are scaling constants to fit the 
distribution of calculated cosine values, and t is a 
conditional threshold value, say - 1 . 5 ,  placed on 
certain of the magnitudes which must be satisfied 
before the associated terms can be included in the 
average. Although the TPROD and MDKS formu- 
lae are fairly well known, the only commercially 
available direct-methods program to incorporate 
these procedures has been M I T H R I L  (Gilmore, 
1984) with the caveat that the estimates may on 
occasion prove to be unreliable (Gilmore, 1991). 

A third less known variant called the u-STAT 
formula (Langs, 1972) 

u+ = No. of quadrupoles(lE,_ k] _> t, [ IE, I, IE,-hi-> t,) 

NO. of quadrupoles(lE~_ dobs [ IE, I, IE,-hl ~ tl) 

No. of quadrupoles([E~_ d ~ t, [IE, I ~ t2, [E,_h[ ~ t,) 

No. of quadrupoles(lE,_dobs [ [E d _< t2, [E~-hi--> t,) 

v(random) = (No. of [El's_> tl)/(total No. of IEl's) (7) 

has been productively used on numerous difficult 
structures in the author's laboratory for nearly 20 
years. Here an upper threshold t~ is chosen to select 
E values greater than, say 1.75, for a positive cosine 
indicator (v +) and a lower threshold t2 is set to select 
a similar number of the weakest E values and quad- 
rupoles relationships for a negative cosine indicator 
(v-) .  The triples phase invariants are determined to 
be reliable ( c o s q b - +  1) when the magnitudes of 
their computed frequencies have the order v + >  
v(random) > v - ,  and may be suspected of being 
aberrant (cos~--  - 1) when v ÷ < v(random)< u- .  
As with the TPROD and MDKS estimates, strong 
positive indications are usually correct for triples 
whose A values exceed 1.5, and less so as A values 
approach 1.0. Strong negative estimates are less cer- 
tain for indicating aberrant triples; usually only 
about 25% of the triples flagged as probably being 
aberrant by the TPROD, MDKS or g-STAT formu- 
lae will actually cause phasing problems. The 
simplest strategy to deal with this situation has been 
to exclude all of these triples from the convergence 
mapping, knowing that the majority of the aberrant 
invariants will be eliminated at the cost of losing a 
small fraction of the reliable triples available in the 
data set. 
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Table 3. 2;1 triples and zonal restricted .,~2 triples for the orthorhombic P212121 structure of gramicidin A 
crystallized from ethanol (N = 334 atoms) 

A b e r r a n t  t r i p l e s  a r e  i n d i c a t e d  b y  a n  a s t e r i s k  a t  t h e  e x t r e m e  r i g h t - h a n d  s i d e  o f  t h e  t a b l e .  T h e  c a l c u l a t i o n  u s e d  1102  E ' s  ~- t~ = 1.75,  1500  E ' s  ~ t2 = 0 . 3 2 ,  

v ( r a n d o m )  = 0 . 0 5 1 .  

h k k - h N !  N 2  N 3  v" v -  A T 
(a)  ~ t r i p l e s  

0 27 2 0 - 27 2 0 0 - 4 I - I - 348 0.066 0.039 1.96 ~- 
2 0 I - 2  0 1 0 0 - 2  3 - 3  - 9  0.096 0.063 1.91 0 

16 0 1 - 16 0 I 0 0 - 2  4 - 4  - 9  0.054 0.047 1.83 0 
2 27 3 2 - 27 3 - 4 0 - 6 8 - 8 - 2 0.032 0.043 1.69 0 

3 6 2 3 - 6  2 - 6  0 - 4  5 - 5  - 1 9  0.033 0.038 1.41 0* 
0 33 I 0 - 3 3  1 0 0 - 2  12 - 12 - 9  0.059 0.033 1.18 0 
0 25 I 0 - 2 5  I 0 0 - 2  15 - 15 - 9  0.057 0.055 1.14 0 

8 0 1 - 8 0 I 0 0 - 2 36 - 36 - 9 0.054 0.040 0.77 0 
17 0 1 - 1 7  0 I 0 0 - 2  39 - 3 9  - 9  0.024 0.042 0.76 ~-* 

0 0 2 0 0 2 0 0 - 4 9 - 9 - 348 0.056 0.078 0.74 0* 
2 0 5 - 2  0 5 0 0 - 10 16 - 16 - 122 0.052 0.042 0.72 0 
2 35 3 2 - 3 5  3 - 4  0 - 6  77 - 7 7  - 2  0.067 0.031 0.69 0 
0 35 2 0 - 35 2 0 0 - 4 I I - I I - 348 0.036 0.038 0.69 7r 
2 14 3 2 - 14 3 - 4  0 - 6  108 - 108 - 2  0.014 0.034 0.61 ~r* 
0 8 2 0 - 8  2 0 0 - 4  21 - 2 1  - 3 4 8  0.033 0.049 0.57 0* 
0 8 2 0 8 - 2  0 - 16 0 21 - 2 1  - 3 5 0  0.033 0.038 0.57 0 

15 0 2 - 15 0 2 0 0 - 4 24 - 24 - 348 0.033 0.048 0.56 ~r 
3 14 2 3 - 14 2 - 6  0 - 4  62 - 6 2  - 19 0.020 0.033 0.55 0* 
5 0 5 - 5  0 5 0 0 - 10 34 - 3 4  - 122 0.031 0.040 0.52 ~'* 

(b )  Z o n a l  r e s t r i c t e d  -~2 t r i p l e s  

4 0 6 - 2  0 - I - 2  0 - 5  2 - 3  - 16 0.062 0.047 3.78 0 
0 27 2 0 0 2 0 - 27 - 4 1 9 - 35 0.055 0.047 3.53 0 
0 27 2 0 8 2 0 - 35 - 4 I 21 - 40 0.063 0.031 3.05 0 
4 0 6 16 0 - I - 20 0 - 5 2 4 - 72 0.036 0.038 2.79 0 

0 27 2 0 - 35 - 2 0 8 0 I - 11 161 0.055 0.028 2.70 0 
2 0 1 16 0 - 1 - 18 0 0 3 4 - 88 0.028 0.040 2.69 0 
4 0 6 - 2  0 I - 2  0 - 7  2 - 3  178 0.056 0.044 2.51 0 

2 0 I - 6  0 - 4  4 0 3 3 - 19 32 0.035 0.052 2.47 0 
2 0 1 15 0 - 2 - 17 0 1 3 24 39 0.038 0.042 2.32 ~r 
0 33 1 0 - 2 5  I 0 - 8  - 2  12 - 15 - 2 1  0.030 0.037 2.24 0 
0 27 2 0 - 2 6  13 0 - I - 15 1 - 2 7  - 3 6 6  0.035 0.041 2.19 7r 

0 27 2 0 - 13 - 6  0 - 14 4 1 - 4 8  - 124 0.029 0.031 2.18 0 
0 0 2 0 35 2 0 - 35 - 4 9 I 1 - 40 0.043 0.042 2.09 0 

16 0 1 0 - 2 5  - I - 16 25 0 4 - 15 93 0.029 0.041 2.08 ~" 
2 0 1 0 - 33 - 1 - 2 33 0 3 - 12 135 0.049 0.026 2.06 ~" 

0 27 2 0 - 3 3  - I 0 6 - 1 1 - 12 1045 0.048 0.038 2.03 ~" 
0 27 2 0 - 2 5  - I 0 - 2  - 1 1 - 15 - 1028 0.035 0.032 2.01 0 
4 0 6 - 6  0 - 4  2 0 - 2  2 - 19 - 110 0.036 0.050 2.00 0 

2 0 1 0 - 2 5  - I - 2  25 0 3 - 15 159 0.043 0.042 1.97 ~" 
0 35 2 0 - 8  2 0 - 2 7  - 4  11 - 2 1  - 3 5  0.041 0.034 1.91 0 

18 0 12 - 1 5  0 2 - 3  0 - 1 4  7 - 2 4  - 5 2  0.030 0.037 1.91 rr 
2 0 I 4 0 - 3 - 6 0 2 3 32 84 0.035 0.045 1.90 0 
4 0 6 0 0 2 - 4 0 - 8 2 9 - 442 0.053 0.052 1.85 0* 
2 0 5 6 0 - 4  - 8 0 - 1 16 19 - 36 0.037 0.038 1.85 0* 
0 27 2 0 - 26 - 13 0 - 1 11 I - 27 - 1055 0.065 0.035 1.84 0 
0 27 2 0 - 27 4 0 0 - 6 1 - 35 - 620 0.051 0.027 1.83 ~" 
3 6 0 - 1 27 0 - 2  - 3 3  0 6 14 - 135 0.037 0.029 1.83 ~" 
2 0 I - 8 0 1 6 0 - 2 3 - 36 - 84 0.054 0.040 1.83 0 

2 0 I - 4  0 - 3  2 0 2 3 - 3 2  110 0.043 0.054 1.81 0* 
2 0 I 15 0 2 - 17 0 - 3 3 24 - 210 0.035 0.046 1.81 0 
2 0 1 - 2  0 - 5  0 0 4 3 - 16 348 0.067 0.052 1.78 0 
2 0 I - 5 0 9 3 0 - 10 3 - 31 - 139 0.038 0.037 1.77 0 
4 0 6 - 5  0 9 1 0 15 2 - 3 1  - 149 0.044 0.045 1.76 ~" 

0 0 2 - 6  0 - 4  6 0 2 9 - 19 84 0.038 0.047 1.73 0 
0 5 4 0 8 2 0 - 13 - 6  17 21 - 4 8  0.017 0.032 1.73 0* 
1 27 0 5 6 0 - 6 - 33 0 14 22 - 54 0.038 0.036 1.71 0 

16 0 1 - 5 0 9 - 11 0 - 10 4 - 31 - 170 0.035 0.037 1.69 ~" 
18 0 12 - 15 0 - 2 - 3 0 - 10 7 - 24 - 139 0.035 0.018 1.64 0 
0 27 2 0 0 - 10 0 - 27 8 I - 122 - 379 0.046 0.039 1.63 ~r 

2 0 1 - 2  0 5 0 0 - 6  3 - 16 - 6 2 0  0.073 0.040 1.63 0 
0 0 2 2 0 5 - 2  0 - 7  9 - 16 - 178 0.056 0.044 .62 0 
2 0 5 - 5 0 9 3 0 - 14 16 - 31 - 52 0.054 0.026 .60 0 

2 0 I - 2 0 9 0 0 - 10 3 - 56 - 122 0.062 0.042 .59 0 
2 0 I - 3 0 14 I 0 - 15 3 - 52 - 149 0.030 0.040 .58 ~r 
0 27 2 0 - 13 - 5  0 - 14 3 1 - 6 8  - 8 0 5  0.028 0.032 .58 ~" 

0 33 I 0 - 2 5  - 1 0 - 8  0 12 - 15 - 161 0.045 0.036 .57 0 
0 0 2 0 - 8  - 2  0 8 0 9 - 2 1  161 0.038 0.042 1.55 0 
0 27 2 0 - 27 - 6 0 0 4 1 - 216 348 0.048 0.040 1.54 0 
2 0 I 3 0 14 - 5  0 - 15 3 52 - 191 0.040 0.058 1.54 0 
4 0 6 2 0 5 - 6  0 - I1 2 16 - 9 9 8  0.048 0.038 1.51 0* 

4 0 6 - 6 0 - 8 2 0 2 2 - 95 110 0.028 0.040 1.50 0* 
16 0 1 2 0 - 5 - 18 0 4 4 16 920 0.044 0.029 1.49 0 

2 0 5 4 0 - 3 - 6 0 - 2 16 32 - 84 0.034 0.042 1.47 0* 

0 0 2 0 13 6 0 - 13 - 8 9 48 - 83 0.032 0.042 1.46 0 
4 0 6 - 15 0 - 2 11 0 - 4 2 - 24 - 894 0.023 0.039 1.45 rr* 
0 27 2 0 - 2 6  - 17 0 - 1 15 1 - 3 0 8  - 3 6 6  0.051 0.032 1.45 0 

2 0 1 - 7 0 - 2 5 0 1 3 - 37 448 0.042 0.043 1.45 0* 
16 0 I 2 0 - 9  - 18 0 8 4 56 227 0.013 0.034 1.44 0 
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h 
2 0 5 

16 0 1 
18 0 12 

6 0 4 
2 0 5 
2 0 5 
4 0 6 
0 0 2 
2 0 I 
0 0 2 
2 0 5 

18 0 12 
0 27 2 

16 0 I 
4 0 6 
4 0 6 

16 0 I 

16 0 1 
6 0 4 
4 0 6 

18 0 12 
0 0 2 
2 0 5 

4 
- 6  
- 7  

- 1 5  
--4 
15 

6 
0 

k 
0 3 
0 4 
0 - 2  

0 2 
0 - 3  
0 - 2  
0 4 

27 4 
2 0 - 9  

17 0 I 
- 5  0 5 

2 0 5 
0 - 2 7  - 8  

- 2  0 9 
7 0 - 2  

I I  0 10 
- 5  0 - 5  
- I  0 15 
- 4  0 3 
- 3  0 14 

- 2 0  0 - 5 
- 2  0 - 9  

- 2 0  0 - 5 

Table 3 (cont.) 

k - h  NI N2 N3 v '  v 
- 6 0 - 8  16 32 - 95 0.040 0.037 

- 10 0 - 5 4 - 19 927 0.024 0.030 
--11 0 - 10 7 - 37 - 170 0.024 0.032 

9 0 - 6 19 - 24 - 1 3 6  0.012 0.040 
2 0 - 2 16 - 32 - 110 0.054 0.039 

- 17 0 - 3 16 24 - 210 0.022 0.027 
- 1 0  0 - 1 0  2 19 - 1 2 6 2  0.034 0.043 

0 - 2 7  - 6  9 35 - 2 1 6  0.042 0.052 
- 4 0 8 3 56 442 0.060 0.039 

- 17 0 - 3  9 39 - 2 1 0  0.034 0.037 
3 0 - 10 16 - 34 - 139 0.043 0.044 

- 20 0 - 17 7 16 - 911 0.037 0.031 
0 0 6 I - 379 620 0.049 0.028 

- 14 0 - 10 4 - 56 - 493 0.033 0.041 
- I1 0 - 4 2 37 - 894 0.022 0.047 
- 1 5  0 - 1 6  2 170 - 1 9 4  0.017 0.026 

- 1 1  0 4 4 - 34 894 0.027 0.035 
- 15 0 - 16 4 - 149 - 194 0.037 0.028 

- 2 0 - 7 19 - 32 - 178 0.028 0.036 
- I 0 - 20 2 - 52 - 707 0.026 0.039 

2 0 - 7 7 - 72 - 178 0.009 0.038 
2 0 7 9 - 56 178 0.044 0.044 

18 0 0 16 - 72 88 0.025 0.034 

A T 

1.44 0 
1.44 0 

1.42 0 
1.42 0 
1.41 0 
1.40 ~r 
1.39 0* 

.35 0* 

.34 0 

.34 0 

.33 0 

.32 0 

.30 0 

.30 0 

.29 ~'* 
1.29 0 
1.29 17" 

1.28 rr 
1.27 0* 
1.27 rr 
1.27 ~'* 
1.26 0 
1.25 0 

An example of  the application of  the v-STAT 
cosine analysis for the phase-restricted triples pro- 
duced by the orthorhombic P212121 structure of  gra- 
micidin A (Langs, 1988) is presented in Table 3. The 
cosine estimates are remarkably good considering 
this structure contains more than 300 atoms in the 
asymmetric unit and its Patterson map exhibits a 
horrendous amount of  peak overlap resulting from 
the helical conformation of the molecular dimer. 
Note that among the 100 triples listed in Table 3, 21 
of  these triples (7 of  19 2~i and 14 of 81 2~2 triples) are 
shown to be aberrant, i.e. c o s ~  = - 1 . 0 .  Although 
the identity of  these 21 triples was not known a 
priori, inspection of  the list clearly indicates that 
only two of  these 21 triples have values of  v + 
exceeding v - .  

In the actual solution of  this structure a significant 
portion of the starting basis set of  42 phases was 
selected by assuming as correct, all those triples 
indications for which Av = v + - v -  exceeded 0.005. 
A total of  33 zonal restricted phases could be defined 
and linked in terms of only five symbols in this 
manner as indicated in Table 4. In this starting set of  
33 + 9 other phases, only phase number 998 proved 
to be in error when the correct values of  the per- 
muted symbols were tested. A solution was found for 
which = 175 atoms of  the structure could be elab- 
orated by RANTAN fragment recycling (Yao, 1983); 
difference Fourier maps revealed the remaining 
atoms of the structure which summed to a total of  
334 non-hydrogen, full and partial occupancy sites. 
Although the account of  this particular structure 
determination seems highly straightforward and 
trivial, one should be assured that these remarkable 
results could not have been obtained if the data had 
been carelessly measured or poorly scaled. 

Another unexpected advantage of the v-STAT 
formula is that the v ÷ and v-  estimators normally 

Table 4. Basis set o f  33 zonal restricted phases for 
gramicidin A as determined from Table 3 

Five symbol s  (a, b, c, d, a / 2 )  and eight symbol i c  re lat ionships  
(~o~ = ~oj - ~ok coded  as i = j -  k )  are e m p l o y e d  to express  this set. 

N o .  ~o 

1 rr/2 (0,27,2) Origin 
3 ~'/2 (2,0,1) and 
6 ~r/2 (3.6,0) enantiomer 

12 rr/2 (0,33,1) 

2 + ~'l 
9 + phases 

122 + 
348 ~- 

N o .  ~o N o .  ~o N o .  ~p 

16 - 1r/2 620 ~r 216 - ~'/2 
35 ~'/2 14 rr/2 998 - 1r/2" 
21 a 379 - ~r/2 4 a / 2  
40 =21  + 1 84 b 920 = 4 +  16 
I I = 21 + 35 36 = 3 - 84 442 ~- 

161 = I I  - 1 52 c 27 d 
178 - 7r/2 31 = 16 - 52 1055 = 1 - 27 
135 + 56 rr/2 

1045 = ~" 15 = 12 - 161 

* Reflect ion number  998 is in error and has a true phase  value  o f  9 0 L  

do not have to be markedly rescaled to fit the 
expected cosine distribution. An important observa- 
tion has been that on those rare occasions that a set 
of  data has produced a lopsidedly large percentage of  
aberrant v-STAT triples estimates, the E data have 
either been shown to be badly scaled, thermally 
unrepresentative of  a point-atom model, incorrectly 
indexed on the wrong cell, or the crystal gave evi- 
dence of  being twinned. Thus if one has had a 
problem in solving a particular crystal structure by 
direct phasing methods, it is highly worthwhile to 
perform a v-STAT triples analysis if for no other 
reason than to confirm that certain of  these effects 
may be plaguing your data and efforts should be 
taken to obtain a better set. 

Aberrance owing to translational symmetry 

Some of  the phasing traps that occur in a triples 
listing are a consequence of translational symmetry 
associated with screw axes and glide planes. A simple 
example of  this symmetry-required aberrance could 
be the conflict between two ~1 indications, 0 and rr, 
for the same phase. One indication must be correct, 
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Table 5. Example of a P32 structure that possesses inconsistent triples, [D-Hyi2,L-Hyia]-meso-valinomycin 
(N = 92 atoms) 

T h e r e  a r e  n o  p h a s e - r e s t r i c t e d  t r i p l e s  in th i s  s p a c e  g r o u p .  M o s t  o f  t h e  p a i r s  o f  t r i p l e s  s h o w n  b e l o w  a r e  e i t h e r  c o n s i s t e n t  o r  i n c o n s i s t e n t ,  d e p e n d i n g  o n  t h e  

v a l u e  o f  T (~). 

h - k  k - h N I  N 2  N 3  u "  u A T ( ~ )  cosqb  

I 3 2 - 3 - 13 1 2 10 - 3 1 11 10 0.037 0.032 3.31 120 0.84* 
I 3 2 2 - 1 3  - 3  - 3  10 1 1 I1 10 0.030 0.054 3.31 240 -0 .88*  
2 3 2 - 4 - 3 2 2 0 - 4 3 125 4 0.072 0.039 2.24 0 0.97 
2 3 2 2 - 3 - 4 - 4 0 2 3 125 4 0.077 0.032 2.24 0 0.97 
2 0 2 2 - 1 - 2 - 4  1 0 4 20 133 0.080 0.042 1.91 240 0.98t 
2 0 2 - 2  I 2 0 - 1 - 4  4 - 2 0  - 133 0.087 0.050 1.91 240 0.87t 
1 3 2 2 - 2  - 3  - 3 - 1 1 I 134 107 0.044 0.057 1.71 120 - 0 . 4 9  
I 3 2 - 3  - 2  1 2 - 1 - 3  1 134 107 0.028 0.055 1.71 240 -0 .51  
I - 13 2 2 - I1 - 3  - 3  24 I 11 30 173 0.043 0.031 1.58 240 0.89 
1 - 1 3  2 - 3  - I 1  I 2 24 - 3  11 30 173 0.038 0.056 1.58 120 -0.05 
0 - 20 6 -- 3 20 0 3 0 - 6 28 48 155 0.054 0.050 1.41 240 0.43t 
0 - 20 6 3 20 - 3 - 3 0 - 3 28 48 - 155 0.055 0.046 1.41 120 0.74t 
1 10 2 2 - 1 1  - 3  - 3  1 I 10 30 291 0.044 0.040 1.40 0 -0 .98  
I 10 2 - 3  - 11 1 2 1 - 3  10 30 291 0.043 0.044 1.40 0 - 0 . 9 8  
I 0 1 1 - 2 3  - 2  - 2  23 1 31 70 158 0.061 0.051 1.29 120 0.01 
1 0 I - 2 - 23 I 1 23 - 2 31 70 158 0.098 0.043 1.29 240 0.86 
0 - 1 2 1 I - 1 - I 0 - 1 20 356 - 3 1  0.100 0.044 1.28 240 0.98t 
0 - 1 2 - 1 I 0 1 0 - 2  20 356 31 0.103 0.040 1.28 120 0.97t 

to  b e  c o r r e c t .  T h e  v a l u e  o f  t h e  f i rs t  i n v a r i a n t  * T h e s e  t w o  t r i p l e s  w e r e  t h e  s t r o n g e s t  in  t h e  e n t i r e  P3~ d a t a  se t  ye t  it is p h y s i c a l l y  i m p o s s i b l e  f o r  t h e m  b o t h  

e x a c t l y  e q u a l s  t h a t  o f  t h e  s e c o n d  in t h e  l ist  m i n u s  120 ~. 
t N o t e  t h a t  t h e s e  p a r t i c u l a r  p a i r s  o f  t r i p l e s  a r e  n o t  s y m m e t r y - r e l a t e d  a n d  t h e i r  v a l u e s  a r e  t o t a l l y  i n d e p e n d e n t  o f  o n e  a n o t h e r .  T h e  c a l c u l a t i o n  u s e d  212 E ' s  

-> t, = 1.75, 300 E ' s  _< t2 = 0 .25 ,  u ( r a n d o m )  = 0 .061.  

the other must be wrong, and one can never be 
absolutely certain which is which unless one solves 
the structure. 

Inconsistent/consistent triples 

Certain trigonal, tetragonal, hexagonal and cubic 
space groups exhibit potentially inconsistent triples, 
that is two triples which involve the same three 
parent reflections, but in a non-identical symmetry- 
related manner (Han & Langs, 1988). The structure 
of [D-HyiZ,L-Hyi4]-meso-valinomycin (P32, N = 9 2  
atoms, Pletnev, Mikhailova, Ivanov, Langs, Gro- 
chulski & Duax, 1991) is chosen to clarify further the 
nature of these special kinds of triples. This structure 
is quite unusual in that the two strongest triples, 
those with the largest A values, actually represent an 
inconsistent pair, as is indicated in Table 5. The 
phase invariant for the first triple is ~ l  = ~01 + @10 -~- 

~11 + 120 °, while that of the second is qO2 = ~1 "~- ~1o 
+~o~] +240°; i.e. the two phase indications are 
inconsistent since they must disagree by 120 °. This 
structure cannot be easily solved if one ignores this 
fact, since the average of the two invariants will 
impart a 92 ° phase error through the tangent for- 
mula. The u-STAT estimators computed for these 
two triples are not the same, which demonstrates 
that the two invariant estimates are not identical, 
and that the second triple is more likely aberrant. 
Removing the second triple from the list reduces the 
tangent-formula error from 92 to only 32 ° . Please 
note in Table 5, that in addition to three other 
inconsistent pairs of triples (7 and 8, 9 and 10, 15 
and 16), there are two consistent pairs as indicated 
by triples 3 and 4 and 13 and 14, and other curious 

pairs of triples, indicated by t,  which are neither 
consistent nor inconsistent because of a change of 
sign associated with one of the phases. One should 
readily conclude that the u-STAT indications given 
in the table can be used to advantage to avoid the 
phasing traps posed by the symmetry-induced 
aberrance of this space group. 

Inconsistent/consistent quadrupoles 

Aberrant phase indications are further propagated 
through quadrupole relationships among the triples. 
Normal quadrupole relationships are formed when 
the invariant values of four triples sum to zero as a 
consequence of phases being paired with their 
Friedel mates. 

~2 = ~k -- ~ l  + ~ l - k  

~3 = ~ l - -  ~h + ~ h - I  

~4 = - - ~ k - h -  ~ l - - k -  ~ h - I  

(~)1 "~" ( ~ 2  "3t- ~ 3  "3L t ~ 4  = 0 (mod 2rr). (8) 

When four strong triples enter into a normal 
quadrupole it is usually the case that each invariant 
q~; --- 0. It should also be clear that when an aberrant 
invariant, qs; _-__ ~r, enters into such a quadrupole, the 
other three invariants must sum together to equal 
this departure from zero. In the case of centrosym- 
metric structures aberrant triples must occur in pairs, 
such that if one of the triples is known to be 7r, either 
one or possibly all three of the remaining triples 
must also be aberrant 7r invariants. 
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Table 6. Examples o f  a structure that exhibits troublesome 77" quadrupoles, ternatin P21212l ( N  = 106 atoms) 

404 E's ~ tj = 1.75, 499 E's _< t2 = 0.26, u(random) = 0.064. The v-STAT values clearly indicate one aberrant triple in the first ¢r quadrupole, and more 
remarkably, three aberrant triples in the second and third quadrupoles. It may become increasingly necessary to employ this aberrant phase information in 
more complex structure determinations. 

h - k k - h N I  N 2  N 3  z, + t: - A T 

4 0 3 - 1 0 8 - 3 0 - I I 6 - 8 - I I I 0.009 0.055 2.78 7r* 
4 0 3 I 0 8 - 5 0 - I 1 6 8 - 132 0.051 0.037 2.73 0 
I 0 19 - 4  0 - 8  3 0 - II  5 - 9  - I l l  0.020 0.021 2.67 0 
1 0 19 4 0 - 8  - 5  0 - I1 5 9 - 132 0.042 0.048 2.62 0 

6 0 6 4 0 1 - 10 0 - 7 7 29 - 123 0.023 0.063 2.05 O* 
7 0 6 4 0 I - I I 0 - 7 I 29 - 465 0.048 0.051 2.04 0 
6 0 6 4 0 - 13 - I0 0 7 7 113 123 0.009 0.056 1.69 Tr* 
7 0 6 4 0 - 13 - 11 0 7 1 113 465 0.028 0.038 1.68 0* 

4 0 3 - I 0 8 - 3 0 - 11 6 - 8 - 111 0.009 0.055 2.78 or* 
l 0 19 - 4 0 3 3 0 - 22 5 6 427 0.044 0.040 2.27 0 
1 0 8 - 3 0 - I I 2 0 3 8 - I 11 248 0.026 0.049 1.44 O* 
I 0 19 2 0 3 - 3 0 - 22 5 248 - 427 0.027 0.069 I. 18 0* 

Translational symmetry also allows for consistent 
and inconsistent quadrupoles (Viterbo & Woolfson, 
1973), for example in the structure of the cyclic 
N-methyl amino heptapeptide ternatin (P2,2121, N -- 
106) as indicated in Table 6. In this particular space 
group there are certain additional non-Friedel- 
related quadrupole relationships for which the sum 
of the four triples invariants must either equal 0 
(consistent) or 77" (inconsistent). The v-STAT estima- 
tors are given in Table 6 for three 77" quadrupoles 
exhibited by this structure. The v +, u-  estimators 
suggest that the first triple in the first 77" quadrupole, 
and the first, third and fourth triples in the second 
and third ¢r quadruples are aberrant 17" invariants. 
Note also, that there are two distinct arrangements 
of phases in the 77" quadruples indicated. Each triple 
in a normal quadrupole (8) is comprised of three 
phases, and each of those three phases appears as 
one of the phases in each of the three remaining 
triples. That is for (D1 ,  ~k appears in @2, ~h in (J~3, 

and ~0h-k in @4. This phase pattern occurs for only 
the third ¢r quadrupole in Table 6, but the first two 
¢r quadrupoles exhibit a different pattern than pre- 
viously had been noted (Langs & Han, 1988). 

Prognosis 

As with all scientific endeavours, there must be prac- 
tical and experimental limitations on what can be 
achieved with any developing technology. Direct 
phasing methods are undergoing changes that may 
markedly increase the level of complexity of struc- 
tures which may be determined by these procedures. 
The object of this presentation was to call attention 
to some important considerations that are often 
ignored in a computational assault on a structure 
determination. Indeed, there is a danger that some of 
the wars that will be waged will be futile if the will of 
the data is not heard. Hopefully other suggestions 
offered in the course of this symposium will also 
temper our judgment as we venture forth. Yet one 

cannot be totally prepared for the unknown, and 
macromolecular applications will undoubtably test 
our will in many other unexpected ways. 

This research has been supported in part by NIH 
grants GM32812 and GM46733. 
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